/*
The GPLv3 License (GPLv3)
Copyright (c) 2022 Akos Horvath
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "mandelbrot.h"
#include "utils.h"
#include
#include
using namespace mpfr;
Mandelbrotc::Mandelbrotc(Vec2mp const &f, Vec2mp const &t, Vec2i const &s, uint32_t mi)
: f(f), t(t), s(s), max_iter(mi)
{
this->threads = std::vector();
//this->screen = std::vector>();
this->screen = new uint8_t*[s.x];
for(int i = 0; i < s.x; ++i)
this->screen[i] = new uint8_t[s.y];
this->done = false;
}
void Mandelbrotc::start_threads(bool first)
{
if (!this->done && !first)
return;
Mandelbrotc const &m = *this;
for (int i = 0; i < this->thread_count; i++) {
std::thread t = std::thread(&Mandelbrotc::calc, this, i);
this->threads.push_back(std::move(t));
//std::cout << "thread created" << std::endl;
}
this->done = false;
}
void Mandelbrotc::stop_threads()
{
for (int i = 0; i < this->thread_count; i++) {
while (!this->threads[i].joinable())
this->threads[i].join();
}
}
void Mandelbrotc::calc(const uint8_t tid)
{
mpreal x, y;
std::vector v = std::vector();
for(double i = tid; i < this->s.x; i+=this->thread_count) {
for(double j = 0; j < this->s.y; j++) {
x = (mpfr::abs(this->f.x - this->t.x) * (i / this->s.x)) + this->f.x;
y = (mpfr::abs(this->f.y - this->t.y) * (j / this->s.y)) + this->f.y;
this->screen[(int)i][(int)j] = this->mandelbrot(Vec2mp(x, y));
}
}
//std::cout << "thread " << tid << " done" << std::endl;
if (tid == thread_count-1)
this->done = true;
}
uint32_t Mandelbrotc::mandelbrot(const Vec2mp &n)
{
uint32_t iter = 0;
// BigFloat x = BigFloat(n.x.precision);
// x.setValue(0.0);
// BigFloat y = BigFloat(n.y.precision);
// y.setValue(0.0);
mpreal x = mpreal(0.0);
mpreal y = mpreal(0.0);
mpreal x2 = mpreal(0.0);
mpreal y2 = mpreal(0.0);
while (x2 + y2 <= 4 && iter < max_iter) {
y = 2.0 * x * y + n.y;
x = x2 - y2 + n.x;
x2 = x * x;
y2 = y * y;
iter++;
}
return iter;//+ 1 - log(log2(abs((int)x2)));
}